Mineral elements required by men or mice are "mined" by plants (land) and by algae (sea).

Humar	ı daily needs	E. Epstein (1972)
Ca	1000 mg/day	Univ. Calif. Davis
Mg	400 mg	
Fe	18 mg	
Iodine	150 ug	
Zn	15 mg	
Си	2 mg	
Mn	2 mg	

Global Nutritional Deficiency

1. 1/2 of childhood deaths result from deficiency in minerals, like Fe, Zn, and Vitamins, e.g. A

Increasing micronutrient metals in seeds and grains of staple foods is a global effort. WHO

2. Unbalanced diet and stressed life styles can cause malnutrition.

Questions

- What are the essential nutrients of plants?
- Why do they need essential nutrients?
- How do plants get their nutrients?

Lec 6. OUTLINE : MINERAL NUTRITION of Plants

Apart from C, H, and O, all other nutrients are absorbed from the soil.

- 1. What are essential nutrients of plants? Macronutrient,
 - micronutrient
- 2. What chemical forms of the nutrients are available to the plant?
- 3. How does each nutrient enter the plant?
- Gas: via stomates
 - Mineral nutrients or ions: via roots
- How are nutrients taken up? [later] 4. How do plants tolerate toxic levels of nutrients or toxic heavy
- metals? E.g. Cu, Zn, Cd, Pb.
- 5. What are the major function(s) of each nutrient?

Beginning of mineral nutrition in plants

Van Helmont (1600s) planted a willow tree. Belgian What happens when nutrients are deficient?

No Molybdate

1

Lawr.ucdavis-ssi109

Copper deficiency on wheat. Yo wilted without spotting or mark

Essential nutrients are those nutrients which are necessary for a plant to complete its life cycle, and for which no other element can substitute. Essential nutrient must have a clear function. A. Nutrient & Conc. required Macronutrients (elements): C, H, O, N, K, Ca, Mg, P, S $> 1 \ mM$ Micronutrient: $< 1 \text{ mM} (\mu M)$ Cl, Fe, B, Mn, Zn, Cu, Mo, Ni

A. Macronutrient	Available	Conc in Di	y matter
	Form	umol/g	μM [medium]
Н	H_2O	60,000	
С	CO ₂	40,000	
0	O ₂ , CO ₂	30,000	
Ν	NO_{3}^{-}, NH_{4}^{+}	1,000	16,000
K	K +	250	6,000
Ca	Ca ++	125	4,000
Mg	Mg + +	80	1,000
Р	$H_2PO_4^-, HPO_4^-$	D ₄ 60	2,000
S	SO ₄ -	30	1,000

B. Micronutrient	Available Form	umol/g	μM
Cl	Cl-	3.0	50
В	BO ₃ -	2	25
Mn	Mn ²⁺	1	2
Zn	\mathbf{Zn}^{2+}	0.3	2
Cu	Cu ²⁺	0.1	0.5
Мо	MoO4 -	0.001	0.5
Fe	Fe ²⁺	1.0-3.0	16-50
Optional			
Ni	Ni ²⁺	0.02	0.5
Si	Si	28	1,000
Na	Na ⁺		

Recap

- 1. Plants require essential nutrients at varying levels.
- 2. Deficiency in nutrients reduce productivity
- 3. Too much can cause toxicity.
- 4. Plants are able to adapt to soils with different levels of nutrients and can transport ions selectively.
- Questions? How do plants regulate how much it takes up? How do they get rid of excess nutrients?
- 5. Plants can sense nutrient level and respond to it. E.g. lateral roots induced under low Pi.
- ? How do plants perceive these messages and respond to it?